

# Service life prediction of low build paint systems for tongue and groove cladding

7th Woodcoatings Congress

Wednesday 13 October 2010

Niels Lutke Schipholt

SHR



#### Outline

- Introduction
- Test setup for accelerated and natural weathering
- Results
- Two step process for high performance medium build coating system
- Outlook

















# Hydrophobation











### Coloured cladding

Concerning the service life life of tongue and groove cladding there is a lack of knowledge about the available (low build) paint systems in the market, the durability thereof and the maintenance needs.

What factors are of importance?



#### Test setup

- Seven low and medium build paint systems
- Three different wood species:
   WRC, Spruce and modified Spruce
- Two different qualities: planed and structured
- 12 weeks of artificial weathering EN927-6
- 2 years of natural weathering Southwest orientation
- Tape test derived from SKH publication 05-01
- Visuall assessment for cracking and flaking



#### Tape test

According to SKH Publication 05-01, adhesion is tested directly after weighing and on a clean (dried with a tissue) surface. Four cuts are made in the paint systems with the following pattern:



The distances between the cuts is about 1 cm and the angle between the cuts is about 30°. A tape (bond strength of 10N / 25mm) is placed over the cuts, pressed firmly and pulled off after one minute in an angle of 180° in about 1 second time. Adhesion is evaluated according to SKH Publication 05-01. An evaluation of 5 means no adhesion and 0 means excellent adhesion.

With this method it is assumed that the adhesion between the tape and the coating is of such quality that a viable assessment can be made of the adhesion of the coating to the wood.



# Natural weathering (09/2006)





#### EN 927-6 for 12 weeks







Paint 1 WRC

Paint 1 Impregnated Spruce

Paint 1 Modified Spruce

Paint 2 WRC

Paint 2 Impregnated Spruce

Paint 2 Modified Spruce





Paint 3 WRC

Paint 3 Impregnated Spruce

Paint 3 Modified Spruce

Paint 4 WRC

Paint 4 Impregnated Spruce

Paint 4 Modified Spruce





Paint 5 WRC

Paint 5 Impregnated Spruce

Paint 5 Modified Spruce

Paint 6 WRC

Paint 6 Impregnated Spruce

Paint 6 Modified Spruce





Paint 7 WRC

Paint 7 Impregnated Spruce

Paint 7 Modified Spruce

Reference WRC

Reference Impregnated Spruce

Reference Modified Spruce

### Results for chalking

**Table 1**. Average value for chalking for all samples per paint system after accelerated weathering and natural weathering.

|       | Chalking [average value for all samples] |                    |
|-------|------------------------------------------|--------------------|
| Paint | Accelerated weathering                   | Natural weathering |
|       | (12 weeks)                               | (2 years)          |
| 1     | 0,0                                      | 0,5                |
| 2     | 5,0                                      | 4,6                |
| 3     | 5,0                                      | 4,9                |
| 4     | 2,3                                      | 4,3                |
| 5     | 4,3                                      | 4,3                |
| 6     | 0,0                                      | 0,2                |
| 7     | 5,0                                      | 5,0                |



#### Results for adhesion

**Table 2**. Average value for adhesion for all samples per paint system after accelerated weathering and natural weathering.

| Paint | Adhesion [average value for all samples] Accelerated weathering Natural weathering |           |
|-------|------------------------------------------------------------------------------------|-----------|
| Faiit | (12 weeks)                                                                         | (2 years) |
| 1     | 2,8                                                                                | 0,7       |
| 2     | 0,0                                                                                | 3,2       |
| 3     | 4,0                                                                                | 2,8       |
| 4     | 1,5                                                                                | 3,6       |
| 5     | 3,0                                                                                | 3,2       |
| 6     | 1,7                                                                                | 0,7       |
| 7     | 4,0                                                                                | 5,0       |



#### Paint 2 WRC





# Raint 2 Impregnated Spruce





# Paint 2 modified Spruce





### Paint 4 WRC





## Paint 4 impregnated Spruce





## Paint 4 modified Spruce





# Ref. impregnated Spruce





# Paint 1 impregnated Spruce





# Raint 3 impregnated Spruce





## Paint 5 impregnated Spruce





# Paint 6 impregnated Spruce





# Raint 7 impregnated Spruce





### Conclusions on Tape test

- In general there is a good correlation between the results after artificial and natural weathering
- The results match with the tendency of the paint system to flake around woodcracks, defects and critical areas
- Therefore an indication of the expected maintenance efforts to be made can be derived from the results from EN 927-6



### Conclusions on Tape test

- Application of the double cross pattern before starting the artificial weathering might give better compensation for woodcracks and defects in natural weathering
- For better service life expectations combinations of paint systems and woodspecies can be pre-screened by EN 927-6 testing in combination with proper evaluation of the Tape test















#### Problem identification

Blistering and flaking due to adhesion failure of paint

#### Aim

Develop a wood treatment based on silane sol-gel technology to:

- improve hydrophobicity of wood
- achieve persistent wet adhesion

## **Chemical Background**

#### **Silanes**

Chemical compounds consisting of a central silicon atom with 4 constituent groups

#### Organofunctional silanes

Silanes having both inorganic and organic groups

Where X = inorganic hydrolyzable group and Y = organofunctional group



## Chemical Background

### Silane compounds used during experimentation include:



Tetraethylorthosilicate (TEOS)



 $\hbox{${\tt $\gamma$-aminopropyltriethoxysilane}$}$ 



Octyltriethoxysilane



## **Chemical Background**

#### Sol-gel process

- 1) Hydrolysis
  - alkoxy groups are hydrolyzed to form silanols and alcohol is released
- 2) Condensation
  - silanol + silanol: Si-O-Si network formed
  - silanol + surface (wood): covalent bonding of silane to the wood





### Two step process

 Pretreatment by flowcoat application: TEOS, functional Silanes, ethanol, self-crosslinking binder, pH control

 Single layer coating application (brush): self-crosslinking binder, UV-titan, pigments, wetting agent, defoamers, thickeners, driers.





## Two step process

New approach to achieve covalent bonding of the finish coat to the wood by means of functional silanes in the sol-gel pretreatment formulation.



# Adhesion – Proof of concept



0% amino silane

3% amino silane

12% amino silane



## Upscaling – IR and spray cycle

Accelerated weathering by IR heating and water spray

- no cracking or flaking
- increased heat in drying = improved adhesion





## Upscaling - 8 weeks EN 927-6

Evaluation after 8 weeks of artificial weathering for planed Norway Spruce for the novel paint system:

| Paint code | Cracking<br>[Y/N] | Flaking<br>[Y/N] | Adhesion<br>[0 – 5]<br>Tape test | Chalking<br>[0 – 5]<br>Tape test | Remarks |
|------------|-------------------|------------------|----------------------------------|----------------------------------|---------|
| 21         | N                 | N                | 1,0                              | 4,0                              |         |

In the figures below two individual test panels are shown after 8 weeks of artificial weathering for planed Norway Spruce along with the tape test results.



Sample code 21





## Upscaling – natural weathering

Natural weathering

Water trap applied to panels

Started Summer 2010





# Water uptake and freeze test

| Step | Action  | Temperature |  |  |  |
|------|---------|-------------|--|--|--|
| 1A   | Water   | 20 ± 2°C    |  |  |  |
| 1B   | Freezer | -18 ± 4°C   |  |  |  |
| 2A   | Water   | 20 ± 2°C    |  |  |  |
| 2B   | Freezer | -18 ± 4°C   |  |  |  |
| 3A   | Water   | 20 ± 2°C    |  |  |  |
| 3B   | Freezer | -18 ± 4°C   |  |  |  |
| 4A   | Water   | 20 ± 2°C    |  |  |  |
| 4B   | Freezer | -18 ± 4°C   |  |  |  |
| 5A   | Water   | 20 ± 2°C    |  |  |  |
| 5B   | Freezer | -18 ± 4°C   |  |  |  |
| 6A   | Water   | 20 ± 2°C    |  |  |  |
| 6B   | Freezer | -18 ± 4°C   |  |  |  |



## Results for water uptake and freeze test





## Results for water uptake and freeze test

Reformulation of pretreatment mixture and optimisation of pH during application resulted in good performance.

| Water uptake [g/m2] |        |        |        |        |        |        |     | Adhesion |
|---------------------|--------|--------|--------|--------|--------|--------|-----|----------|
| Code                | Step 1 | Step 2 | Step 3 | Step 4 | Step 5 | Step 6 |     |          |
| 22.3                | 390    | 602    | 741    | 845    | 907    | 925    | 1S2 | 0        |
| 22.4                | 373    | 581    | 727    | 837    | 900    | 921    | 1S1 | 0        |
| 22.5                | 346    | 532    | 668    | 770    | 835    | 853    | 1S1 | 0        |
| Av.                 | 370    | 572    | 712    | 817    | 881    | 900    |     |          |
| S.d.                | 23     | 36     | 39     | 41     | 39     | 40     |     |          |



### Conclusions and outlook

### Persistant wet adhesion achieved?

- Proof of principal was achieved that with the chosen approach good wet adhesion can be produced
- Further testing is carried out to support the previous results
- Development of a fully water based pretreatment formulation is desirable as well as optimisation of the finish coat formulation



# Questions



Thank you for your attention!